Vertex-decomposable Graphs, Codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford Regularity

نویسندگان

  • Türker Bíyíkoglu
  • Yusuf Civan
چکیده

We call a vertex x of a graph G = (V,E) a codominated vertex if NG[y] ⊆ NG[x] for some vertex y ∈ V \{x}, and a graph G is called codismantlable if either it is an edgeless graph or it contains a codominated vertex x such that G − x is codismantlable. We show that (C4, C5)-free vertex-decomposable graphs are codismantlable, and prove that if G is a (C4, C5, C7)-free well-covered graph, then vertexdecomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. These results complement and unify many of the earlier results on bipartite, chordal and very well-covered graphs. We also study the Castelnuovo-Mumford regularity reg(G) of such graphs, and show that reg(G) = im(G) whenever G is a (C4, C5)-free vertex-decomposable graph, where im(G) is the induced matching number of G. Furthermore, we prove that H must be a codismantlable graph if im(H) = reg(H) = m(H), where m(H) is the matching number of H. We further describe an operation on digraphs that creates a vertex-decomposable and codismantlable graph from any acyclic digraph. By way of application, we provide an infinite family Hn (n > 4) of sequentially Cohen-Macaulay graphs whose vertex cover numbers are half of their orders, while containing no vertex of degree-one such that they are vertex-decomposable, and reg(Hn) = im(Hn) if n > 6. This answers a recent question of Mahmoudi, et al [12].

منابع مشابه

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Sequentially Cohen-macaulay Bipartite Graphs: Vertex Decomposability and Regularity

Let G be a bipartite graph with edge ideal I(G) whose quotient ring R/I(G) is sequentially Cohen-Macaulay. We prove: (1) the independence complex of G must be vertex decomposable, and (2) the Castelnuovo-Mumford regularity of R/I(G) can be determined from the invariants of G.

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014